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Abstract. The concern about air quality in urban areas and the impact of particulate matter (PM) on public
health is turning into a big debate. A good solution to sensitize people to this issue is to involve them in the
process of air quality monitoring. This paper presents contributions in the field of PM measurements using low-
cost sensors. We show how a low-cost PM sensor can be extended to transfer data not only over Wi-Fi but also
over the LoRa protocol. Then, we identify some of the correlations existing in the data through data analysis.
Afterwards, we show how semantic technologies can help model and control sensor data quality in an increasing
PM sensor network. We finally wrap up with a conclusion and plans for future work.

1 Introduction

Compared to the 1980s, air quality in Germany has visibly
improved (Heinrich et al., 2002), but air pollution is still a
major health risk for the population. According to the World
Health Organization, outdoor air pollution causes 3.8 million
deaths in 2016, and around 90 % of the world’s population
lives in places where the pollution exceeds WHO guideline
limits (WHO, 2018). One component of air pollution is par-
ticulate matter (PM). PM is a mixture of small solid parti-
cles and liquid droplets which can be a result of chemical
reactions between pollutants, emitted from power plants, in-
dustries, and automobiles (Boubel et al., 2013). PM can also
come from natural sources like natural fires, deserts, and
open fields and can be generated by tires and brakes (Garg
et al., 2000).

Air pollution and PM concentration can vary significantly
between different places, depending on the location and
strength of emitters like traffic density. Hence, there is a need
for good spatial coverage to assess PM levels and to plan and
monitor particulate-matter-reducing initiatives (e.g., installa-
tion of filters or driving bans for certain types of vehicles,
as currently discussed in Germany). However, only few offi-
cial PM monitoring stations exist, and many cities have only

one. While official monitoring stations provide high-quality
measuring results (quality aspect: accuracy), the spatial cov-
erage (quality aspect: completeness) is poor. In addition, the
PM measurements are only available as average values over a
24 h span. This causes a high delay (quality aspect: latency).
Due to limited coverage of official monitoring stations, the
citizen science project luftdaten.info put together an assem-
bly kit for low-cost sensors for people to increase the spatial
coverage of air pollution measurements and also to reduce
the latency. Obviously, these sensors provide less accuracy
than high-end official monitoring stations. Since a complete
calibration of the low-cost sensors cannot be completed, a lot
of work needs to be done in order to use these data collections
and to assess their quality.

Particulate matter is often (but not exclusively) generated
by combustion processes, mainly in industrial production
and from road traffic vehicles. These vehicles cause addi-
tional PM by tire abrasion. The PM concentration can be
structured in a permanent background concentration and a
mutable concentration that is caused by local and/or tempo-
rary incidents (Kallweit and Wintermeyer, 2013).

This paper is an extended version of the conference pa-
per (Steuer et al., 2018). It gives a more detailed view on
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the data-quality observations of the low-cost sensors, and it
gives more information about the accuracy of their PM mea-
surements.

The rest of this paper is structured as follows: in Sect. 2,
we discuss the related work in the area of PM measurement
and data-quality dimensions and processing. Section 3 gives
a presentation of the sensors utilized for the project and the
extensions made to make the sensors mobile and enable the
data collection and processing. Section 4 describes results
from the analysis of the sensor data and the correlation anal-
ysis between the relative humidity and PM measurements.
Section 5 introduces our approach for monitoring the data
quality of the sensors by using semantic tools to pair the sen-
sors with air quality monitoring stations to check the sensor
values. Section 6 concludes our paper and gives future work
plans for follow-up projects.

2 Related work

In this section, we take a look at the achieved work in the
area of PM measurements and data quality in data streams.

2.1 Air quality and particulate-matter sensing

In order to assess the air quality, limits, and acceptable values
for particulate matter must be set by regulatory authorities.
The EU Air Quality Directive introduces the pollution limits
and the air quality objectives to set the compliance targets
and guidelines1.

Methods to measure concentration of particulate matter
are numerous. Some methods rely on gravimetric analysis,
where filters are weighed before and after sampling periods
(Nussbaumer et al., 2008; Giechaskiel et al., 2014). Optical
methods are also used, which perform light scattering (Vin-
cent, 2007), light absorption (Giechaskiel et al., 2014), or
light extinction (Mellon et al., 2011). Methods to measure
the particle’s size include microscopy and impactors (Vin-
cent, 2007).

There are various works that estimate the density of par-
ticulate matter. They use different methods and tools. We
present here a list of some of the contributions in this research
area. van Donkelaar et al. (2015) use a method based on
satellite-derived estimates of PM2.5 values to measure the ex-
posure of the human population to particulate matter. Wang
et al. (2010) propose a method based on the correlation be-
tween aerosol optical thickness (AOT) and the surface-level
PM concentrations to estimate the regional PM values. These
techniques are mainly used on a global scale and do not fo-
cus on the real-time estimation of particulate-matter density
in urban areas. To achieve this goal, a lot of projects imple-
mented a combination of reference air quality stations with
low-cost sensors to increase the spatio-temporal coverage of

1http://ec.europa.eu/environment/air/quality/directive.htm (last
access: 24 October 2019).

air quality monitoring. In the research project SmartAQnet2,
an Internet-of-things platform is developed to enable every-
one to provide measured environmental data. This platform
integrates various data sets (weather, traffic, etc.) and data
from stationary and mobile measuring devices (Budde et al.,
2017a). The quality of the mobile generated data is investi-
gated in connection with the usability of the cost-effective
sensors (Budde et al., 2017b). This makes it possible to bet-
ter interpret the significance of data from citizen science
projects.

Other projects in the field of community sensing are
OpenSense and its successor OpenSense2 (Calbimonte et al.,
2017). The project is a joint project from the universities
ETH Zurich and EPFL and the company nano-tera. It is
a public-transport project with the goal of establishing an
urban sensor network to measure the air pollution. AERO-
TRAM is a project from the Karlsruhe Institute of Technol-
ogy (KIT) in Germany (Hagemann et al., 2014) with a focus
on the construction of an air quality sensor mounted on top
of a tram.

Penza et al. (2014) used calibrated low-cost sensors to
monitor the air quality with a combination of electrochem-
ical gas sensors, optical particulate-matter detectors, temper-
ature, and relative humidity. Experiments were carried out
for a period of 5 months, where low-cost sensors were com-
pared to reference analyzers and air quality monitoring sta-
tions. However, the results do not indicate how the sensors
can perform in real life scenarios. In order to support ex-
isting air quality monitoring networks and to give the pub-
lic better information about detailed source attribution of air
quality, Heimann et al. (2015) used a highly dense network
of low-cost sensors to provide the required temporal resolu-
tion of the measurements. While this work emphasized the
benefit of using low-cost sensors to provide a higher spatio-
temporal coverage of air quality, it did not specify how these
sensors perform in comparison to reference analyzers and air
quality stations. With the increasing proliferation of low-cost
sensors, Jovaševic-Stojanovic et al. (2015) examined some
of the existing low-cost sensors on the market and came up
with a set of requirements for calibration and quality control
of these sensors. Castell et al. (2017) investigated the qual-
ity and usefulness of 24 identical units of a commercial low-
cost sensor platform against CEN (European Standardization
Organization) reference analyzers, evaluating their measure-
ment capability under different environmental conditions and
over a period of time. While these sensors are not meant for
regulatory or health purposes, they can offer an aggregated
view about the air quality and increase the spatio-temporal
coverage.

2http://smartaq.net/ (last access: 24 October 2019).
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2.2 Data quality in data streams

Data can be evaluated based on different criteria. These cri-
teria indicate how these data can be interpreted and whether
they can be used for certain applications or not. Data can
be described using different dimensions and value ranges.
Batini and Scannapieco (2006) offer an interesting view on
the data-quality dimensions and their respective definitions
in Batini and Scannapieco (2006). The definition of Batini
covers the most important dimensions of data quality that
sensor data need to have, like accuracy, completeness, and
timeliness.

Work in the area of data quality and data anomaly us-
ing ontology-based solutions employs ontologies to describe
the quality metrics. Geisler et al. (2016) propose a data-
quality ontology-based framework for data stream applica-
tions, where they define quality metrics for content, queries,
and applications that use the data. The framework uses an
ontology to define all the metadata for the data-quality met-
rics. The framework offers the option of describing the sen-
sors and their quality metrics through semantic rules; how-
ever, all the metadata about the sensor need to be provided
in advance. Kuka and Nicklas (2014) provide a solution for
general quality-aware sensor data processing that uses proba-
bilistic processing to provide continuous data-quality values
for the incoming data. In Kuka (2014), the process was en-
hanced by adding a description of the context by using the
SSN (Semantic Sensor Network) ontology (Compton et al.,
2012) to describe contextual information about the sensors
used.

3 Particulate-matter sensor system

In this section, we take a look at the project luftdaten.info
and their provided PM sensor kits for citizens to make
particulate-matter measurements on their own. In a student
project, we demonstrate how to extend these sensors to use
them in motion as well.

3.1 Stationary sensors

The OK Lab in Stuttgart offers technical support for the
project luftdaten.info3 in the development areas of trans-
parency, open data, and citizen science. This project aims at
raising the population’s awareness to the risks of particulate
matter. The project enables citizens to assemble their own
PM sensors using simple instructions. These sensors pro-
vide an additional source of information about the air quality
to people besides air quality monitoring stations. The luft-
daten.info project has a visualization component, which dis-
plays all the sensors on a map with their PM measurements.
The data produced by the sensors are open to everyone and
can be used for analysis and air quality monitoring. Bamberg,

3http://www.luftdaten.info (last access: 24 October 2019).

Figure 1. PM sensor kit.

a small city with a population of 80 000 that is a UNESCO
World Heritage Site, already has some of those sensors, while
there are over 5000 units deployed all over Germany. This
sensor network is expected to grow further to reach other
parts of the country and cities with thin coverage or no cov-
erage at all. The project “Frankenstaub” of the Bluepingu4

registered association works on spreading the self-made sen-
sors over the inhabitants of Nuremberg so that people mea-
sure the fine-dust load from home. The assembly instructions
of the sensors are simple, and the acquisition cost of the com-
ponents is fairly low (around EUR 30). The components in-
clude the Nova SDS011 sensor as a particulate-matter sensor
that works with the principle of laser scattering, a tempera-
ture sensor, a relative-humidity sensor, and a microcontroller
with a Wi-Fi chirp. The parts can be assembled together with
a few cables (see Fig. 1). Further, it is recommended to use
a weatherproof shell for protection. Finally the firmware is
available on the Internet, and the sensors can be easily regis-
tered on the OK Lab platform5. The sensor can send the mea-
surements if connected to the Internet. The sensors ought to
be installed on the outside of buildings at least 2 m above the
ground.

3.2 Mobile sensors

In the Innovation Lab “Living Lab Bamberg”6 of the Univer-
sity of Bamberg and the Coburg University of Applied Sci-
ence, student projects are taking place. In some of these stu-
dent projects, the PM sensors of the project luftdaten.info are
used as starting points for further research. The biggest short-
comings of the kits are the lack of mobility through limited
Wi-Fi accessibility and the need for a power outlet in areas
where data needs to be measured.

4http://www.bluepingu.de/blog/513-frankenstaub (last access:
24 October 2019).

5https://www.madavi.de/ok-lab-stuttgart/ (last access: 24 Octo-
ber 2019).

6https://www.uni-bamberg.de/mobi/transfer/
innovationslabor-bamberg-coburg/ (last access: 24 October 2019).
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Figure 2. Use case MoRa (mobile LoRaWAN air sensor).

In a proof-of-concept approach, we wanted to develop
a mobile particulate-matter-measuring device based on the
SDS011 sensors that makes it possible to transmit data over
long distances. This is done with a LPWAN (low-power
wide-area network) extension instead of Wi-Fi. LPWAN
makes it possible to transmit small data units over long dis-
tances with a low energy consumption (Penkov et al., 2017;
Petäjäjärvi et al., 2017). We focus on LoRa (long range)7 as
a LPWAN technology. This is called LoRaWAN in the fol-
lowing.

One goal is to simplify the collection of sensor data even
in previously inaccessible areas. With the help of these hard-
ware extensions and the new network protocols, the data-
quality dimension of completeness could be improved by
better spatial coverage and quick data updates.

For different application scenarios, we considered the two
development variants, MoRa and CoRa. MoRa is the abbre-
viation of the mobile LoRaWAN air sensor, and CoRa is
the abbreviation of constrained LoRaWAN air sensor. With
MoRa, we are targeting a mobile handheld device which can
record and send measurements in any location at the push of a
button. CoRa is a stationary variant (fixed installation) which
is intended for long-term operation and is therefore intended
to record long-term measurements for extended evaluation.
Both have mostly identical components. However, the appli-
cation purpose determines which of the two variants can be

7https://lora-alliance.org (last access: 24 October 2019).

considered. Communication takes place via a centralized ad-
ministration unit (e.g., via a gateway).

MoRa incorporates all sensors (temperature and humidity
sensors, PM sensor, GPS, and LoRaWAN radio modules).
The measurements can only be started manually via a TFT
touchscreen (see Fig. 2). Users receive instant feedback on
the particulate-matter concentration on site. The measure-
ments are transmitted via the LoRaWAN network (Wixted
et al., 2016). Manual measurements are possible at all acces-
sible locations. MoRa can be operated with a rechargeable
battery (e.g., lithium-ion rechargeable batteries, type 18650).
As MoRa only carries out manual measurements, the energy
requirement is considerably low. This compensates the high
energy consumption of the display.

CoRa has either a non-permanent power source (battery)
or – like in this scenario – is equipped with solar cells to
harvest energy and extend the device operating lifetime. Al-
though CoRa has been optimized for stationary use (see
Fig. 3), the sensor is not necessarily tied to a fixed installation
location. It is equipped with the same sensors as MoRa but
without the energy-intensive display. The main requirements
here are extended operation time and weather resistance. In
principle, CoRa is an autonomous unit which can be set up
fast and works autonomously to measure air quality in fixed
time intervals.
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Figure 3. Use case CoRa (constrained LoRaWAN air sensor).

3.3 Sensing architecture

Figure 4 gives an overview of the system architecture. The
sensor nodes CoRa and MoRa communicate via LoRaWAN
and MQTT-SN (Message Queuing Telemetry Transport for
Sensor Networks) with an MQTT-SN gateway.

The MQTT-SN is a standard of the International Busi-
ness Machines Corporation (IBM). It was designed for
cost-effective wireless sensor networks (WSNs; Truong and
Stanford-Clark, 2013). MQTT-SN is a version of the MQTT
standard. MQTT-SN supports connectionless protocols and
does not explicitly require TCP/IP. The protocol is optimized
for networks with low minimal transmission units (MTUs).
This allows us to use MQTT-SN on non-IP-based networks.

LoRaWAN is a new technology in the field of low-power
and long-range communication that was developed to meet
the growing challenges of the Internet of things and to
get data in real time in isolated geographical areas or in
machine-to-machine communications, where it was not pos-
sible before (Wixted et al., 2016; Adelantado et al., 2017).
LoRaWAN uses LoRa, a proprietary chirp-spread-spectrum
modulation technology on layer 1 (physical layer or bit trans-
mission layer) in the OSI model. Therefore there is no ad-
dressing in pure LoRa. MAC addresses for LoRa chirps can
be assigned in layer 2 (LoRaWAN) by the manufacturer.
LoRa is designed for energy-saving applications for wide-
range networks. For this reason, focus was placed on low
energy consumption during the development of the standard.

The MQTT-SN gateway is the connection point between
the sensor and the MQTT broker. The database connector
parses the sensor data and sends them as a suitable HTTP
request to a time series database as well as the database of
luftdaten.info. The data from the time series database can be
visualized via Grafana. The data sent to luftdaten.info are
visualized as mentioned in Sect. 3 at maps.luftdaten.info.

4 PM data quality

Low-cost sensors for measuring the concentrations of partic-
ulate matter in the atmosphere have limitations in accuracy,
which are documented in their data sheets and certain scien-
tific studies (Crilley et al., 2018; Kumar et al., 2015).

Sensors may suffer from anomalies and external in-
fluences, especially relative humidity (RH) and tempera-
ture (LUBW Landesanstalt für Umwelt, Messungen und
Naturschutz Baden-Württemberg, 2017). These low-cost
sensors, however, can have significant benefits when con-
textual information like weather, location, or measurement
time is used for online data stream processing. The sensor
nodes have a maximum survival range determined by the rel-
ative humidity of the environment. Such knowledge can be
introduced into a contextual representation through ontolog-
ical instantiation of the sensor, which can be used to generate
data stream queries that perform anomaly detection on the
incoming data.

Context information is also valuable when it enables the
use of data fusion to measure the quality of the sensors. Con-
sidering the sensors used in the luftdaten.info, it is known
that relative humidity affects the accuracy of the particulate-
matter values considerably. The sensor data sheet8 indicates
a relative-humidity upper bound of 70 % RH for a working
environment. If the relative humidity rises above this value,
the quality of data decreases and more anomalies can occur.
On some sensor platforms, PM sensors are installed together
with relative-humidity and temperature sensors.

For these sensor platforms, the anomaly detection rule de-
rived from the data sheet could be used with the on-board
relative-humidity sensors. The rule specifies a relative error
of 15 % (±10 µg m−3) in relative humidity less than 70 %.
Above this range the quality is undefined. Since these values
come from cheap unreliable sensors, they need verification

8http://www.inovafitness.com/en/a/chanpinzhongxin/95.html
(last access: 24 October 2019).
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Figure 4. Sensing architecture.

Figure 5. Linking of sensors to air quality monitoring stations
based on location.

and cannot be used alone to check the PM values for anoma-
lies.

Other data sources like the air quality monitoring stations
located in an acceptable range of the deployed sensors can
be used to perform data fusion to closely check whether the
sensors have the normal conditions to function properly and
to check the accuracy of the values of relative humidity. Fig-
ure 5 shows how stations within close range of the sensors
can be related to each other and later used as a data source
for quality assessment and anomaly detection of the sensor
measurements.

For the sensor platforms without relative-humidity sen-
sors, the contextual information provides the possibility to
deploy the anomaly rule. The deployment location of the sen-
sor can also influence the measurements. The sensors should
not be deployed indoors; otherwise the measurement results
for the project luftdaten.info will be falsified by events such
as cooking or smoking.

4.1 PM sensor data analysis

In order to examine the sensor data, data are collected from
three SDS011 sensors and compared with three air quality
monitoring stations in three different locations, one in Aus-

tria (Römerberg) and two in Switzerland (Schimmelstrasse
and Stampfenbachstrasse). The sensors are installed within
close range of the air quality monitoring stations. One sen-
sor (ID 11149) is in Römerberg, in the city of Linz (Aus-
tria), with a distance of 134 m between the SDS011 sensor
and the air quality monitoring station. The other two sensors
(IDs 601 and 574) are installed in the city of Zurich (Switzer-
land), with distances of 35 and 90 m to stations in Schimmel-
strasse and Stampfenbachstrasse respectively. The distance
between the sensors and the stations is in reality non-existent.
The distances given are registered to hide the actual location
of the sensors. Detailed information about the stations can be
extracted from Table 3. The information about the stations in
Zurich are based on the descriptions of the health and envi-
ronment office of Zurich9, and that about the station in Linz
is based on the description of the provincial government of
upper Austria10.

In Fig. 6, the daily averages of the sensor in Römerberg are
compared with those of the neighboring station over a year
(from December 2017 to December 2018). In the month of
August, there were very high values taken by the sensor with
a deviation of about 1276 %. There are no clear explanations
for these high values given the steady values measured by the
station. For the remaining values over the recorded period,
the SDS011 sensor captures the tendencies that are measured
by the station, as depicted in Fig. 7. Table 1 summarizes the
correlation coefficient of the monthly averages between the
sensor and the air quality reference station; 91.18 % of the
values are lower than those of the station under relative hu-
midity of 70 %, and 88.59 % are lower under relative humid-
ity of 50 %. Also, the sensor managed to record PM values
exceeding the EU regulation of 25 mug m−3 409 times in
comparison to the 1266 times measured by the official sta-
tion. From 8771 hourly sensor measurements, we see only
2620 measurements with a deviation of ±5 µg m−3, which
makes only 29.87 % of all the measurements.

The second combination of sensors in Zurich is between
the SDS011 sensor in Schimmelstrasse (ID 601) and the air

9https://www.stadt-zuerich.ch/gud/de/index.html (last access:
24 October 2019).

10https://www.land-oberoesterreich.gv.at (last access: 24 Octo-
ber 2019).
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Table 1. Correlation coefficient (rs) of the reference station Römer-
berg and the sensor 11149.

Month Monthly Monthly rs
avg. avg.

reference 11149
station

18 March 23.6181 11.4032 0.86
18 April 12.3003 3.9401 0.92
18 May 12.2626 5.8680 0.88
18 June 11.4327 4.4230 0.88
18 July 11.0561 4.6358 0.91
18 August 10.1765 31.6916 0.06
18 September 10.9733 7.7550 0.69
18 October 18.2584 13.7595 0.90
18 November 19.0937 15.1097 0.58
18 December 20.8713 9.5256 0.92
19 January 16.5410 6.4358 0.84
19 February 25.2446 10.3028 0.84
19 March 8.9953 6.3475 0.54

Figure 6. Daily average PM and relative-humidity values in Römer-
berg.

quality monitoring station nearby. The daily and monthly
average PM and relative-humidity values are depicted in
Figs. 8 and 9 respectively. Table 2 summarizes the corre-
lation coefficient of the monthly averages between the sen-
sor and the air quality reference station. In relative humid-
ity over 70 %, the station has 77.20 % higher measurements.
When the relative humidity is under 50 %, the station has
92.89 % higher values than the SDS011 sensor. The sensor
managed to record PM values exceeding the EU regulation
of 25 µg m−3 356 times in comparison to the 444 times by
the official station. From 8786 hourly measurements taken,
the SDS011 managed to make 6984 measurements with a
deviation of ±5 µg m−3, which makes up 79.49 % of all the
measurements. The SDS011 sensor mostly had PM values
less than the station.

The last combination is between the air quality monitor-
ing station in Stampfenbachstrasse and the SDS011 sensor
(ID 547). Table 4 summarizes the correlation coefficient of
the monthly averages between the sensor and the air quality
reference station. In Fig. 10, 61.66 % of the station measure-
ments are higher than the SDS011 sensor when the relative

Figure 7. Monthly average PM and relative-humidity values in
Römerberg.

Table 2. Correlation coefficient (rs) of the reference station Schim-
melstrasse and the sensor 601.

Month Monthly Monthly rs
avg. avg.

reference 601
station

17 March 15.2127 12.4576 0.94
17 April 12.1626 9.4544 0.84
17 May 7.4980 3.9168 0.86
17 June 8.9473 5.1569 0.95
17 July 7.0079 3.5661 0.79
17 August 9.2008 6.1086 0.93
17 September 7.7744 6.1107 0.95
17 October 9.0216 6.7871 0.95
17 November 10.8516 9.4500 0.98
17 December 10.2868 10.0661 0.96
18 January 10.1653 8.5694 0.98
18 February 19.5228 15.6707 0.87
18 March 17.0403 14.9485 0.92

humidity is over 70 % and 96.97 % higher when the relative
humidity is below 50 %. From 8783 hourly measurements
taken, the SDS011 managed 7715 measurements with a de-
viation of ±5 µg m−3, which makes 87.84 % of all the mea-
surements. The monthly average PM values in Fig. 11 show
that the sensor 547 had the closest measurements to those of
a neighboring station.

From the correlation analysis, it can be stated that sensors
can detect the increase and decrease in PM levels. However,
they cannot offer PM measurements as accurate as those of
reference stations. The specification of the working environ-
ment is also not accurate. The SDS011 sensors have better
measurements in higher relative humidity. Any use of the
sensor data without a reference to the nearest stations is not
possible.

4.2 Correlation of PM2.5 and PM10

In general, the PM2.5 value is always equal to or lower than
the PM10 value. This is given by the definition of the two
entities. But it is interesting to analyze the relationship of

www.j-sens-sens-syst.net/8/317/2019/ J. Sens. Sens. Syst., 8, 317–328, 2019
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Table 3. Location information of the air quality monitoring stations.

Station Stampfenbachstrasse Schimmelstrasse Römerberg

Address
Stampfenbachstrasse 144, Schimmelstrasse 83, Klammstraße 37,
8006 Zurich 8003 Zurich 4020 Linz

Longitude 8.53972 8.52453 14.2832

Latitude 47.38677 47.37063 48.30258

Height above sea level 445 m 413 m 262 m

Height above ground 6 m 3 m 10 m

Road distance 2 m 3 m 4 m

Location type

City center, moderately frequented City center, busy street, Heavily frequented
street, residential area, closed residential area, closed road, tunnel portal,
development (one-sided) buildings urban residential area,

heavy industry 4 km away

Figure 8. Daily average PM and relative-humidity values for
Schimmelstrasse.

Figure 9. Monthly average PM and relative-humidity values for
Schimmelstrasse.

both values for higher concentrations. For this analysis, we
focused again on a radius of 100 km around Bamberg and
looked at the hourly measurements for a period of over a
year. Only 0.6 % of all data sets have a PM10 concentration
above 150 µg m−3. All of these sensors show a high concen-
tration of PM2.5 particles. The portion of the particles with
a diameter between 2.5 and 10 µm hence decreases. So inci-
dents with a high PM2.5 pollution occur more frequently over
a longer time period, while high pollution of PM10 particles
only occurs in very short periods and may therefore not be
recognizable in the mean values.

Table 4. Correlation coefficient (rs) of the reference station
Stampfenbachstrasse and the sensor 574.

Month Monthly Monthly rs
avg. avg.

reference 574
station

17 February 17.4279 17.4720 0.95
17 March 11.1304 9.1936 0.95
17 April 11.1143 9.5191 0.80
17 May 6.1684 4.1887 0.88
17 June 7.9656 5.7762 0.96
17 July 6.0839 3.9111 0.78
17 August 8.4307 6.8265 0.89
17 September 7.1320 6.3413 0.92
17 October 8.1645 6.5000 0.95
17 November 10.5505 9.3066 0.96
17 December 10.2258 9.8823 0.95
18 January 9.7575 8.7922 0.97
18 February 5.8358 4.3081 0.99

Figure 10. Daily average PM and relative-humidity values for
Stampfenbachstrasse.
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Figure 11. Monthly average PM and relative-humidity values for
Stampfenbachstrasse.

Figure 12. Median of PM10 against relative air humidity over
1 year.

4.3 Correlation with humidity

For analyzing the correlation with humidity, the direct rela-
tionship between relative humidity and PM10 measurements
is investigated. The calculation of correlation coefficients
leads to a value of 0.0, which means that there is no direct
relationship between these entities. Figure 12 shows the me-
dian of PM10 depending on the relative air humidity.

The uncertainty of the SDS011 sensor that gives a lim-
itation to 70 % relative humidity is not visible in this cor-
relation. Below this level there is no direct relationship. In
very humid air, however, a significant increase in PM con-
centration can be seen. The high humidity indicates that
there are many water particles (aerosols) in the air. In par-
ticular, there are many such particles in the air composition
that are measured by the sensor, which is not able to dis-
tinguish water from other particles of the same size. This
leads to a systematic error which is well known for sensors
of this kind (LUBW Landesanstalt für Umwelt, Messungen
und Naturschutz Baden-Württemberg, 2017; Laquai, 2018).

5 System architecture

To assess the quality of the PM sensors, we use the architec-
ture consisting of two parts as shown in Fig. 13: the ontol-

Figure 13. Architecture of the ontological population system.

ogy processing engine (OPE) and the stream processing en-
gine (SPE). The OPE collects contextual information about
the sensors and air quality monitoring stations to generate
instances of the ontologies.

Ontology instances express all the needed information
about the sensor. This information is gathered from three
main sources: information about the sensors from the data
sheet, information about air quality monitoring stations, and
the data generated by the sensor. The first source gives the
location of the sensor and data-quality-related conditions.
The second gives a full list of the existing reference stations
and their coordinates. The third source helps to extract the
schema and the types of every attribute in the data.

The SPE is a software that handles streams of sensor data.
The SPE receives data streams from the sensors and pulls in-
formation about the reference stations and their data. It pre-
pares the data for storage and writes them to the database.
The query generation part takes the model of every sensor
and generates a quality query to measure the accuracy of the
measurements. The use of an ontology with a specific do-
main in this case makes metadata available for any informa-
tion about the sensors and also helps automatize query gen-
eration for the target sensors.

5.1 Implementation

The Ontology Processing Engine populates the ontology and
stores it on a linked data graph. It runs on the basis of Apache
Jena framework (McBride, 2002). It receives data from PM
sensors through the stream processing engine and from the
German Meteorological Service, DWD (Deutscher Wetterdi-
enst), about all air quality reference stations.

The SPE, implemented using a data stream management
system, gets the reference stations’ data by querying the
GeoServer of the DWD, formats the data as JSON (ID, lo-
cation, and measurement data), and forwards the ID and lo-
cation to the OPE.

The aforementioned JSON data contain all stations. The
SPE receives the sensor data and inputs them into our data
stream. We transform the JSON data to relational data and
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write them into a database. The OPE checks the existence
of the sensors in the linked data graph through their IDs and
adds the new ones to the graph.

Sensors are linked to the nearest stations using Apache
Jena ARQ API. It combines simple spatial querying with
SPARQL (Kollia et al., 2011). The station location is rep-
resented by a polygon through a bbox, and the PM sensor
has a geolocation; thus, a spatial SPARQL query is issued
for every sensor to find the nearest reference station. The
SPARQL query could yield more than one station. If this hap-
pens, the centroid of the polygon given by the station is com-
puted and the station with the nearest centroid is assigned to
the PM sensor. After the sensors and the stations are linked,
the RDF (Resource Description Framework) graph now con-
tains all the information about every sensor with the related
station.

With the RDF graph available, the query generator cre-
ates, for every sensor, a query that measures the accuracy
of the PM and relative-humidity values. The query is then
started by a data stream management system, Odysseus,
where relative-humidity data streamed by the station are
fused with the data from the related sensor. From relative-
humidity values of the station, the accuracy of the relative hu-
midity of a sensor is immediately checked. Furthermore, the
continuous query reports a drop in the accuracy of PM values
as soon as the relative humidity rises above 70 %. Anoma-
lies are also detected if a sensor keeps sending high relative-
humidity values, although the station reports dry weather.

5.2 Impact

Given the overall huge number of sensors deployed through-
out Germany and the available air quality monitoring stations
in Germany (912), we used a sample of 5410 PM sensors.
The coverage quality is measured using a radius of 10 km.
In a radius of 10 km, Fig. 14 shows that 1244 sensors (23 %)
are within 10 km of a station, and 2759 sensors (51 %) find
a station within 20 km. Every class stands for the increasing
radius that contains the next available station for every sen-
sor. The first class stands for the nearest stations in a 10 km
radius, and the next class indicates the number of sensors that
have a station within 20 km.

5.3 Performance

We tested the performance of the architecture in terms of
throughput. We want to measure the time needed to gradually
create the linked graph for the SDS011 sensors. The com-
puter used for the experiments has the following specifica-
tions: Intel(R) Core(TM) i5-2520M at 2.50 GHz (four cores)
with 8 GB of RAM, and the operating system used is Ubuntu
16.04.3 LTS. Figure 15 shows the instantiation time evolu-
tion with the increase in the number of sensors. The runtime
becomes linear after 4000 sensors. The instantiation process
is a one-time operation for every sensor.

Figure 14. Classes of coverage in 10 km intervals.

Figure 15. Time needed to create the RDF graph depending on the
number of sensors.

6 Conclusion and future work

We see how low-cost PM sensors can be used to expand
the spatial coverage of particulate-matter concentration mea-
surements. These sensors show less accuracy in comparison
to reference air quality monitoring stations. With the use of
an ontology-populating architecture and a data stream man-
agement system, we can monitor the data quality of those
low-cost sensors.

For optimal sensor measurements, an auto-calibration
of the sensors should also be considered. This calibration
should offset systematic measurement deviations in long-
term use. The data analysis shows that the PM sensors
give considerably lower PM values in comparison to refer-
ence stations. The effect of relative humidity is also vari-
able. The measurement deviations (LUBW Landesanstalt für
Umwelt, Messungen und Naturschutz Baden-Württemberg,
2017) caused by the attached fan and the attached hose length
and different copies of the production batch (LUBW Lan-
desanstalt für Umwelt, Messungen und Naturschutz Baden-
Württemberg, 2017) impact the quality of the measurements.
To improve the quality of the data, extensive experiments
with the sensors along with a comparison with reference sta-
tion are planned to check the measurement similarities and
create predictive models for the sensors. Further influences
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on the sensor data quality must also be recorded and mod-
eled in order to make the approach for online monitoring of
the sensor data quality operational.

The Innovation Lab student project shows the possibilities
of extending the platform luftdaten.info with new functions.
Due to the complexity in the implementation of MoRa and
CoRa, it is difficult to make them available to the general
public. Now, we can build mobile sensors with which we can
increase the coverage of particulate-matter measurements on
the map. With the use of mobile sensors, it is possible to dis-
cover sensors that give measurements with a higher deviation
and to report these.

Data availability. This is a citizen science project in which the
data are provided under the links of the projects. In this case, the
database is Madavi. A link to all the data can be found here: https:
//www.madavi.de/sensor/graph.php?showfloat (last access: 24 Oc-
tober 2019).

As for the data from the weather stations mentioned in the paper,
every weather station provides open access to its data.
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